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Abstract. We consider the (2+1)-dimensional massive Thirring model as a gauge theory, with one-fermion
flavor, in the framework of the causal perturbation theory and address the problem of dynamical mass
generation for the gauge boson. In this context we obtain an unambiguous expression for the coefficient of
the induced Chern–Simons term.

1 Introduction

Recently there has been renewed interest in theories in-
volving four-fermion interactions as a framework to the
study of the top quark condensate [1]. In these models,
based on the Nambu and Jona-Lasinio model [2], the top
quark acquires mass when the four-fermion coupling con-
stant is larger than a certain critical value. It has been
shown that a similar behavior occurs in d- (2 ≤ d < 4)
dimensional Thirring-like four-fermion interactions [3–7].

The Thirring model [8] was originally proposed as a
soluble model for the interaction of fermions in (1 + 1)
dimensions. This original version had no local gauge sym-
metry. Since then, several authors [3–5], using a linearized
version of the model by introducing an auxiliary vector
field, have studied the Thirring model in d dimensions,
in the context of 1/N expansion, taking into account a
‘gauge fixing’ term. However, as shown in [6,7,9], one can
implement gauge invariance by using the Stückelberg for-
malism, so that the Thirring model emerges as a gauge-
fixed version of a gauge theory. This model has been used
to study fermion dynamical mass generation [6,7,10].

In (2 + 1) dimensions these models exhibit a richer
structure. Namely, for odd number of massive two-com-
ponent fermions (the fermion masses may be present in the
original Lagrangian or have dynamical origin) a Chern–
Simons parity-breaking term is induced. This term is rele-
vant to the quantum Hall effect [11] and, in particular, to
dynamical mass generation for the associated vector field.

In this paper, we will consider the three-dimensional
Thirring model as a gauge theory for one-fermion flavor.
The approach we will adopt to study this model was pro-
posed by Epstein and Glaser [12] in the 1970s and later ap-
plied to quantum electrodynamics (QED) by Scharf [13].
Their method, in which causality plays a central role, has
the advantage that all physical quantities are mathemati-
cally well defined and ultraviolet divergences do not occur
if one carefully carries out the splitting of distributions

in the perturbation series. In particular, this implies that
no ultraviolet cut-off has to be introduced and, for a non-
renormalizable theory, this is the interesting point.

Our main interest here is the coefficient of the induced
Chern–Simons term, because it is generally stated that
this coefficient is dependent on the regularization scheme
used to treat the divergences [7,14], even though this dif-
ficulty has already been overcomed in usual treatments of
QED3 [15,16]. As shown in [17], the causal approach af-
fords an unambiguous method for dealing with such prob-
lems.

This paper is organized as follows. In Sect. 2 we in-
troduce the gauged version of the Thirring model [6,7],
for one-fermion flavor, using the Stückelberg formalism.
In Sect. 3 we give a brief presentation of the method of
Epstein and Glaser. A proof of the nonrenormalizability
of the Thirring model in the context of the causal method
is given in Sect. 4. In Sect. 5 we obtain the vacuum polar-
ization tensor and the modified gauge boson propagator,
showing that there is generation of dynamical mass for
the gauge boson as a function of the coupling constant.
Section 6 is devoted to conclusions.

2 Thirring model as a gauge theory

Following closely [6] and [7], we present in this section the
Thirring model as a gauge theory. In (2+1) dimensions the
Lagrangian density for the massive Thirring model with
one-fermion flavor is

L = ψiγµ∂µψ −mψψ − G

2
(ψγµψ)(ψγµψ), (1)

where ψ is a two-component fermion field with mass m,
supposed to be positive. The coupling constant G has di-
mension of (mass)−1 and will be redefined as G = e2/M2,
with e a dimensionless parameter [18].
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The algebra for the γ matrices in (2+1) dimensions is
realized using the Pauli matrices

γ0 = σ3, γ1 = iσ1, γ2 = iσ2, (2)

with

{γµ, γν} = 2gµν , γµγν = gµν − iεµνδγδ, (3)

where gµν = diag(1,−1,−1) and εµνδ is the totally anti-
symmetric Levi–Civita tensor.

We can linearize the four-fermion interaction by the
introduction of an auxiliary vector field Ãµ, so that the
Lagrangian is rewritten as

L′ = ψiγµD̃µψ −mψψ +
M2

2
ÃµÃµ, (4)

with D̃µ = ∂µ− ieÃµ. It is important to note that, in spite
of the formal similarity, D̃µ is not a covariant derivative,
because the Lagrangian density (4) does not have local
gauge symmetry. The three-vector Ãµ ≡ − e

M2ψγµψ is just
a suitable representation of the current.

However, one can introduce a local gauge symmetry
[9] making use of the Stückelberg formalism. Namely, we
decompose the vector field Ãµ according to Ãµ = Aµ−∂µθ,
where Aµ is a vector field and θ a neutral scalar field,
whereas we perform the change ψ → e−ieθψ, ψ → ψeieθ

(for a review of Stückelberg’s formalism see [19]). Thus we
get

L′′ = ψiγµDµψ −mψψ +
M2

2
(Aµ − ∂µθ)2, (5)

with Dµ = ∂µ − ieAµ. This Lagrangian is invariant under
the gauge transformation

Aµ → A′
µ = Aµ + ∂µφ,

θ → θ′ = θ + φ, (6)

ψ → ψ′ = eieφψ,

ψ → ψ
′
= ψe−ieφ

so that Aµ is really a gauge field and Dµ a covariant
derivative. From (6) we can see that in the unitary gauge
θ′ = 0 one recovers the Lagrangian (1), i.e., the original
Thirring model is just a gauge-fixed version of (5).

Since the Lagrangian (5) has local gauge symmetry,
by adding a gauge-fixing and a Faddeev–Popov ghost term
LGF+FP , we can obtain the complete BRST invariant La-
grangian [7]

LTh,G = L′′ + LGF+FP , (7)

where LGF+FP can be chosen in the form

LGF+FP = −iδB

[
c

(
F [A, θ] +

ξ

2
B

)]
, (8)

so that (7) is invariant under the BRST transformation

δBψ(x) = iec(x)ψ(x),

δBθ(x) = c(x),
δBAµ(x) = ∂µc(x),
δBc(x) = iB(x), (9)
δBc(x) = 0,
δBB(x) = 0.

In the above expressions δB represents the nilpotent BRST
transformation, c(x) and c(x) are the Faddeev–Popov
ghosts and B(x) is the Nakanishi–Lautrup auxiliary field.

When the functional F [A, θ] is linear in both Aµ and
θ, the ghost fields decouple from the matter fields and, in
particular, choosing the Rξ gauge F [A, θ] = ∂µA

µ+ξM2θ,
the Stückelberg field also decouples. So the Lagrangian
(7), after integration over B, takes the form [6,7]

LTh,G = LA,ψ + Lθ + Lgh, (10)

where

LA,ψ = ψiγµDµψ −mψψ +
M2

2
AµA

µ

− 1
2ξ

(∂µAµ)2, (11)

Lθ =
1
2
(∂µθ)2 − ξM2

2
θ2,

Lgh = i
[
(∂µc)(∂µc) − ξM2cc

]
.

Note that Aµ is not a dynamical field at tree level
because there is no associated kinetic term in (11). Never-
theless, as we are going to show, the gauge boson acquires
dynamics by radiative corrections. Another point which
must be stressed is that, in the limit ξ → ∞, we recover
the original Thirring model.

As pointed in [6], the fact that the Lagrangian (11) has
a gauge symmetry restricts the choice of the regularization
schemes to be used, i.e., we only can employ the regular-
ization schemes which preserve the gauge symmetry. This
is the merit of the above construction in comparison with
the naive use of the Lagrangian (4) with a gauge fixing
term, without the prior introduction of a gauge symmetry
(see [3,4]). Nevertheless, this is not sufficient to remove
the regularization ambiguity in the coefficient of the in-
duced Chern–Simons term when we calculate the fermion
loop corrections. In this sense the causal method has been
proven to be useful [13,17], because it never runs into the
usual difficulties associated with ultraviolet divergences,
resulting in a unambiguous value for the coefficient of the
induced Chern–Simons term.

3 Epstein and Glaser theory

In the causal approach to quantum field theory, the S-
matrix is viewed as an operator-valued distribution, writ-
ten as

S(g) = 1 +
∞∑
n=1

1
n!

∫
dx1 . . .dxn Tn(x1, . . . , xn)

×g(x1) . . . g(xn). (12)
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Once T1(x) is known, the S-matrix is constructed induc-
tively, order by order, from the causal structure. The c-
number test functions in (12) are supposed to belong to
the rapidly decreasing Schwartz space functions, g(x) ∈
S(R3). The adiabatic limit g → 1 must be considered at
the end of the calculations.

Analogously, the inverse S-matrix has the form

S(g)−1 = 1 +
∞∑
n=1

1
n!

∫
dx1 . . .dxnT̃n(x1, . . . , xn)

×g(x1) . . . g(xn), (13)

where T̃n(x) can be obtained by formal inversion of (12).
Since the n-point function Tn (T̃n) is symmetrical in its
arguments we will use the notation X = {x1, ..., xn}.

The inductive step is as follows: if all Tm(X),m ≤ n−1
are known, one can define the distributions

A′
n(x1, . . . , xn) =

∑
P2

T̃n1(X)Tn−n1(Y, xn),

R′
n(x1, . . . , xn) =

∑
P2

Tn−n1(Y, xn)T̃n1(X), (14)

where the sums run over all partitions

P2 : {x1, . . . , xn−1} = X ∪ Y , X 6= Ø, (15)

into disjoint subsets with |X |= n1, |Y |≤ n−2. If the sums
are extended in order to include the empty set X = Ø we
get

An(x1, . . . , xn) =
∑
P 0

2

T̃n1(X)Tn−n1(Y, xn)

= A′
n(x1, . . . , xn) + Tn(x1, . . . , xn),

(16)

Rn(x1, . . . , xn) =
∑
P 0

2

Tn−n1(Y, xn)T̃n1(X)

= R′
n(x1, . . . , xn) + Tn(x1, . . . , xn),

where P 0
2 stands for all partitions

P 0
2 : {x1, . . . , xn−1} = X ∪ Y. (17)

We can see that An and Rn in (16) are not known from the
hypothesis of induction because they contain the unknown
Tn. Only the difference

Dn(x1, . . . , xn) = R′
n −A′

n = Rn −An, (18)

is known.
If we use causality, it turns out that Rn has retarded

support and An has advanced support, i.e.

suppRn(X) ⊆ Γ+
n−1(xn),

suppAn(X) ⊆ Γ−
n−1(xn), (19)

with

Γ±
n−1(x) ≡ {(x1, . . . , xn−1) | xj ∈ V

±
(x),

∀j = 1, . . . , n− 1}, (20)

V
±

(x) = {y | (y − x)2 ≥ 0,±(y0 − x0) ≥ 0}.
The distribution Dn has causal support, suppDn ⊆

Γ+
n−1 ∪ Γ−

n−1 and by decomposing Dn in advanced and
retarded distributions we obtain the Tn distribution using
(16).

The operator-valued distributions which we shall have
to split are of the form

Dn(x1, ..., xn) =
∑
k

:
∏
j

ψ(xj)dkn(x1, . . . , xn)

×
∏
l

ψ(xl)
∏
m

A(xm) :, (21)

where ψ, ψ are the free fermion fields and A the free gauge
boson fields. In this expression dkn are numerical tempered
distributions, dkn ∈ S ′(R3n), with causal support. Because
of the translation invariance, it is sufficient to put xn = 0
and consider

d(x) ≡ dkn(x1, . . . , xn−1, 0) ∈ S ′(Rm),
m = 3n− 3. (22)

The nontrivial step is the splitting of the numerical
causal distribution d in the advanced and retarded distri-
butions a and r, respectively. From the fact that Γ+(0) ∩
Γ−(0) = {0} we can see that the behavior of d(x) in x = 0
is crucial in the splitting problem. For this reason, it is nec-
essary to classify the singular distributions. With this aim
we introduce the following definitions [13,20]:

Definition 1. The distribution d(x) ∈ S ′(Rm) has a
quasi-asymptotics d0(x) at x = 0 with respect to a posi-
tive continuous function ρ(δ), δ > 0, if the limit

lim
δ→0

ρ(δ)δmd(δx) = d0(x) 6≡ 0, (23)

exists in S ′(Rm).

The equivalent definition in momentum space reads

Definition 2. The distribution d̂(p) ∈ S ′(Rm) has a
quasi-asymptotics d̂0(p) at p = ∞ if the limit

lim
δ→0

ρ(δ)〈d̂(p
δ
),

∨
φ (p)〉 = 〈d̂0,

∨
φ〉, (24)

exists for all
∨
φ ∈ S(Rm).

In (24) d̂ denotes the distributional Fourier transform

of d and
∨
φ the inverse Fourier transform of φ. The function

ρ(δ) is called the power-counting function.

Definition 3. The distribution d ∈ S ′(Rm) is called sin-
gular of order ω if it has a quasi-asymptotics d0(x) at
x = 0, or its Fourier transform has a quasi-asymptotics
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d̂0(p) at p = ∞, respectively, with power-counting func-
tion ρ(δ) satisfying

lim
δ→0

ρ(cδ)
ρ(δ)

= cω, (25)

for each c > 0.

It follows [12,13] that for ω < 0 the solution is unique
and can be defined by multiplication by a step function.
For ω ≥ 0 the retarded distribution obtained from the
causal splitting can be written down by means of the ‘dis-
persion’ formula [13]

r̂(p) =
i

2π

∫ +∞

−∞
dt

d̂(tp)
(t− i0)ω+1(1 − t+ i0)

. (26)

But, in contrast with the case ω < 0, this solution is not
unique. If r̃(x) is the retarded part of another decompo-
sition, then r̃(x) − r(x) is a distribution with support in
{0}. In momentum space this gives the general solution of
the splitting problem

r̃(p) = r̂(p) +
ω∑

|a|=0

Cap
a, (27)

where the constant coefficients Ca are not fixed by the
causal structure; additional physical conditions are needed
to determine them.

It is worth making some comments about the solutions
(26) and (27). First, the solution (26), called the central
splitting solution, preserves the symmetries of the theory,
in special Lorentz covariance and gauge invariance. Sec-
ond, in expression (27) the minimal distribution splitting
condition, which says that the singular order cannot be
raised in the splitting, was assumed. This condition, very
important in QED4 [13] and QED3 [17,21], will also be
useful here. Finally, the right singular order ω in (26) is
essential, since if we underestimate ω, the integral in (26)
will not be convergent and, again, one runs into the ultra-
violet divergences of the usual perturbation theory.

4 Nonrenormalizability proof

The Lagrangian LA,ψ, (11), is our starting point for the
causal treatment of the Thirring model as a gauge theory.
From (11) we see that the first-order term in the causal
perturbative expansion of the S-matrix is

T1(x) = −ie : ψ(x)γµψ(x) : Aµ = −T̃1(x). (28)

From this expression we see that the dimensionless param-
eter e plays the role of an expansion parameter, analogous
to the electric charge in QED. But in the limit ξ → ∞,
when we recover the relation between Ãµ and the fermion
current in the original Thirring model, the true expansion
parameter is G.

As pointed out in the last section, the Aµ field is not
a dynamical field (the genuine dynamical field is ∂µAµ).

Therefore, there is no propagation associated with Aµ.
Nevertheless, we can, formally, associate to Aµ a ‘propa-
gator’. From (11) we obtain the Feynman Green’s function

DF
µν(k) =

i√
2π

1
M2

(
gµν − kµkν

k2 − ξM2

)
. (29)

In the same way we get the commutation functions

D(±)
µν (x) = ± i

(2π)2

∫
d3k

kµkν
M2 δ(k

2 − ξM2)

×θ(±k0)e−ik·x. (30)

This enables us to obtain the second-order distributions
T2. However, before starting the perturbation theory, it is
useful to derive a general expression for the singular order
ω of arbitrary graphs.

Proposition 1. For the Thirring model the singular order
is

ω = 3 − f − 3
2
b+

1
2
n, (31)

where f (b) is the number of external fermions (bosons)
and n is the order of perturbation theory.

Proof. The proof is by induction [13,17]. First we verify
(31) for the diagrams in lowest order. The first-order term
(28) has ω = 0, by definition.

Then, to verify that this relation is preserved in the
step from n− 1 to n in perturbation theory, we must con-
sider a tensor product of two subgraphs with singular or-
der ω1 and ω2 which satisfies (31), by hypothesis. This
tensor product has to be normally ordered, giving rise to
bosonic and fermionic contractions. Here we will consider
only the bosonic case, since fermionic contractions have
already been considered in the context of QED3 [17,21].

Suppose that l bosonic contractions arise in the pro-
cess. Then the numerical distribution of the contracted
expression is

t
[µ]
1 (x1 − xr, . . . , xr−1 − xr)

l∏
j=1

D(+)
µjνj

(xrj
− yvj

)t[ν]2

×(y1 − yv, . . . , yv−1 − yv)
≡ t(ζ1, . . . , ζr−1, η1, . . . , ηv−1, η), (32)

where we have taken into account the translation invari-
ance. In this expression {xrj

} is a subset of {x1, . . . , xr}
and {yvj

} is a subset of {y1, . . . , yv}. We have introduced
the relative coordinates

ζj = xj − xr, ηj = yj − yv, η = xr − yv, (33)

and the superscripts [µ] and [ν] mean the collection of
indices {µ1, . . . , µl} and {ν1, . . . , νl}, respectively.

The Fourier transform of t(ζ, η) in (32), taking into
account the fact that products go into convolutions, is

t̂(p1, . . . , pr−1, q1, . . . , qv−1, q)

∝
∫  l∏

j=1

d3kj


 δ(3)(q −

l∑
j=1

kj)t̂
[µ]
1 (. . . , pi − kr(i), . . .)
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×
l∏

j=1

D̂(+)
µjνj

(kj)t̂
[ν]
2 (. . . , qs + kv(s), . . .), (34)

where r(i) = v(s) if and only if xi and ys are joined by a
contraction. For the coordinates xj and ym which are not
joined by a contraction we have just pj and qm as argu-
ments, respectively. The proportionality sign is to indicate
that we are omitting powers of 2π.

Applying t̂(p1, . . . , q) in a test function
∨
φ ∈

S(R3(r+v−1)) we get, after some algebra,

〈t̂,
∨
φ〉 ∝

∫
d3r−1p′ d3vq′ t̂[µ]

1 (p′)t̂[ν]2 (q′)ψ[µν](p′, q′), (35)

where ψ[µν](p′, q′) is defined as

ψ[µν](p′, q′) =
∫  l∏

j=1

d3kj


d3q′ δ(3)

×(q′ −
l∑

j=1

kj)
l∏

j=1

D̂(+)
µjνj

(kj) (36)

×
∨
φ (. . . , p′

i + kr(i), . . . , q
′
s − kv(s), . . . , q

′).

In order to determine the singular order of t̂, according
to definition 2, we have to consider the scaled distribution
t̂(p1δ , . . . ,

q
δ ). Then, we find

〈t̂(p1

δ
, . . . ,

q

δ
),

∨
φ〉 = δm

∫
d3r−3p′ d3v−3q′ t̂[µ]

1 (p′)t̂[ν]2 (q′)

×ψδ[µν](p′, q′), (37)

with m = 3(r + v − 1) and

ψδ[µν](p′, q′) =
∫  l∏

j=1

d3kj


d3q′ δ(3)

×

q′ −

l∑
j=1

kj


 l∏
j=1

D̂(+)
µjνj

(kj)

×
∨
φ (. . . , δ(p′

i + kr(i)), . . . , δ(q′
s − kv(s)),

. . . , δq′). (38)

We introduce the new variables k̃j = δkj and q̃ = δq, and
observing that

D̂(+)
µν (

k̃

δ
) =

k̃µk̃ν
δ2M2 δ

(1)

(
k̃2

δ2
− ξM2

)
θ

(
k̃0

δ

)

=
k̃µk̃ν
M2 δ

(1)(k̃2)θ(k0) ≡ D̂
(+)
0µν(k̃), (39)

we obtain

ψδ[µν](p, q) =
1
δ3l

ψ0
[µν](δp, δq), (40)

where the superscript 0 indicates that D̂(+)
µν is replaced by

D̂
(+)
0µν in (36). Then, using this result and δp = p̃, δq = q̃,

we find from (37)〈
t̂
(p1

δ
, . . . ,

q

δ

)
,

∨
φ

〉
= δ3−3l

∫
d3r−3p̃d3v−3q̃ t̂

[µ]
1

×
(
p̃

δ

)
t̂
[ν]
2

(
q̃

δ

)
ψ0

[µν](p̃, q̃).(41)

But, by the induction hypothesis, the distributions t̂[µ]
1 and

t̂
[ν]
2 have singular orders ω1 and ω2 with power-counting

functions ρ1(δ) and ρ2(δ), respectively. So we verify that
the limit considered in definition 2 exists for the distribu-
tion t̂ with power-counting function given by

ρ(δ) = δ3l−3ρ1(δ)ρ2(δ), (42)

with singular order

ω = 3l − 3 + ω1 + ω2. (43)

Thus, substituting

ωi = 3 − fi − 3
2
bi +

1
2
ni, (44)

for ω1 and ω2 gives

ω = 3 − (f1 + f2) − 3
2
(b1 + b2 − 2l) +

1
2
(n1 + n2), (45)

which proves the above proposition for l bosonic contrac-
tions.

From (31) we have that, for one-loop corrections, the
vacuum polarization (n = 2, f = 0, b = 2) has ωvp = 1,
the fermion self-energy (n = 2, f = 2, b = 0) has ωse = 2
and the vertex correction (n = 3, f = 2, b = 1), ωv = 1.
We consider here only the vacuum polarization tensor.
The fermion self-energy and the vertex correction will be
considered elsewhere [22].

In addition, from proposition 1 it follows that the
Thirring model is a nonrenormalizable theory, as expected.
This means that the number of free parameters, i.e. the
coefficients of the polynomial in p in (27), increases in-
definitely when we consider higher orders in perturbation
theory such that we cannot fix all of them by symmetry
considerations. However, as we shall see in the next sec-
tion, for the vacuum polarization tensor we will be able
to determine all constants appearing in second-order per-
turbation theory.

5 Dynamical mass generation

In this section we consider the vacuum polarization and
address the dynamical generation of a kinetic term for
the gauge boson. Since the vacuum polarization tensor
assumes the same form as that in QED3, we omit the
details of the calculation, which can be found in [13,17].

In second-order perturbation theory we can construct
the distribution D2(x1, x2) = R′

2 −A′
2 following the steps
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outlined in Sect. 1. So, using Wick’s theorem, the contri-
bution for the vacuum polarization in D2 is

D2vp(x1, x2) = −e2Tr
[
γµS(−)(y)γνS(+)(−y)

−γµS(+)(y)γνS(−)(−y)
]

× : Aµ(x1)Aν(x2) :, (46)

where y ≡ x1 − x2 and

S(±)(x) = ± i
(2π)2

∫
d3p (p/+m)θ(±p0)

×δ(p2 −m2)e−ip·x. (47)

The numerical distribution associated with D2(x1, x2)
can be written in the form

dµν(x1, x2) = Pµν(y) − P νµ(−y), (48)

where

Pµν(y) ≡ e2Tr
[
γµS(+)(y)γνS(−)(−y)

]
. (49)

The distribution dµν(y) can be shown to have causal
support [13,17]. So we can proceed the splitting according
to the procedure already explained, following closely [17].
In momentum space, using (47) for the fermion commu-
tation functions, Pµν(k) can be written as

P̂µν(k) = − e2

(2π)
5
2

∫
d3p θ(p0)δ(p2 −m2)θ(k0 − p0)

×δ[(k − p)2 −m2]jµν(k, p), (50)

with

jµν(k, p) = Tr [γµ(p/+m)γν(k/− p/−m)]
= −2[(m2 − p2)gµν + 2pµpν − (pµkν + kµpν)

+ gµνp · k + imεµνδkδ]. (51)

From (50) and (51) one can observe that Pµν is gauge
invariant

kµP̂
µν(k) = 0. (52)

This property enables us to attribute to Pµν the following
tensor structure

P̂µν(k) = P̂µνs (k) + P̂µνa (k), (53)

with

P̂µνs (k) = (kµkν − k2gµν)B̃1(k2), (54)

P̂µνa (k) = ImεµνδkδB̃2(k2). (55)

Projecting B̃1(k2) and B̃2(k2) from P̂µν(k), one ob-
tains

B̃1(k2) = − e2

(2π)
3
2

1
8
√
k2

(
1 +

4m2

k2

)
×θ(k0)θ(k2 − 4m2), (56)

and

B̃2(k2) =
e2

(2π)
3
2

1
2
√
k2
θ(k0)θ(k2 − 4m2). (57)

Since the Fourier transform of Pµν(−y) is given by
P̂µν(−k), from (48) we see that

d̂µν(k) = P̂µν(k) − P̂ νµ(−k)

= d̂µνs (k) + d̂µνa (k), (58)

where

d̂µνs (k) = (kµkν − k2gµν)B1(k2), (59)

d̂µνa (k) = imεµνδkδB2(k2), (60)

with B1(k2) and B2(k2) given by expressions (56) and
(57), replacing θ(k0) by sgn(k0).

From (59) and (60) we find that the singular orders of
d̂µνs (k) and d̂µνa (k) are ωs = 1 and ωa = 0, respectively.
Then the distribution splitting is nontrivial (ω ≥ 0) and
we need to use the central splitting solution, (26), with the
appropriate ω to obtain the retarded distribution. Since
d̂µνs and d̂µνa are independent due to the tensor structure,
the splitting process for each one must be considered sep-
arately.

For the symmetric part we have

r̂µνs (k) =
i

2π
(kµkν − k2gµν)

×
∫ +∞

−∞
dt

t2B1(t2k2)
(t− i0)2(1 − t+ i0)

, (61)

which results in

r̂µνs (k) =
i

(2π)
3
2

(
gµν − kµkν

k2

)
Π(1)(k2), (62)

with

Π(1)(k2) =
e2

16π
k2sgn(k0)

[
4m
k2 +

1√
k2

(
1 +

4m2

k2

)

×

ln

∣∣∣∣∣∣
1 −

√
k2

4m2

1 +
√

k2

4m2

∣∣∣∣∣∣− iπθ(k2 − 4m2)




 .(63)

Since the singular order of d̂µνs is ωs = 1, from (27) we
have for the general solution of the splitting

r̃µνs (k) = r̂µνs (k) +C0g
µν +C ′

δε
µνδ +Cµ1 k

ν +Cν2 k
µ, (64)

where C0, C ′
δ, C

µ
1 and Cν2 are constants which are not fixed

by causality. However, C ′
δ = 0 to preserve the symmetric

structure. The Lorentz structure and the fact that Cµ1
and Cν2 are c-numbers lead to Cµ1 = Cν2 = 0. By the
requirement of gauge invariance, kµr̃µνs (k) = 0, C0 must
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vanish. So, the general solution of the splitting problem
for the symmetrical part is given by (62).

For the antisymmetric part we use (26) with ω = 0

r̂µνa (k) = −m

2π
εµνδkδ

∫ +∞

−∞
dt

tB2(t2k2)
(t− i0)(1 − t+ i0)

, (65)

from which we obtain

r̂µνa (k) = − m

(2π)
3
2
εµνδkδΠ

(2)(k2), (66)

where

Π(2)(k2) =
e2

4π
sgn(k0)√

k2

×

ln

∣∣∣∣∣∣
1 −

√
k2

4m2

1 +
√

k2

4m2

∣∣∣∣∣∣− iπθ(k2 − 4m2)


 . (67)

The general solution for the antisymmetric part is

r̃µνa (k) = r̂µνa (k) + C0g
µν + C1δε

µνδ. (68)

However, the constant C0 must vanish to preserve the an-
tisymmetric structure and C1δ must also vanish by gauge
invariance, so that the general solution of the splitting of
the antisymmetric part is given by (66).

At this point, it is interesting to note that, in spite
of the fact that the model is nonrenormalizable, we were
able to determine all constants Ca appearing in the gen-
eral solution for the polarization tensor. Of course, this
is not always the case. In fact, for the fermion self-energy
and the vertex correction there remains one undetermined
constant [22].

The vacuum polarization tensor is defined as

Πµν(k) = −i(2π)
3
2
(
r̂µν(k) − r̂′

µν(k)
)
, (69)

where r̂′
µν(k) is the Fourier transform of the numerical

distribution associated with R′
2(x1, x2), (14). In this case,

r̂′
µν(k) = −P̂µν(−k) and, from (49), we see that this dis-

tribution do not contribute in the region k2 < 4m2. Thus
we can write down the polarization tensor as

Πµν(k) =
(
gµν − kµkν

k2

)
Π(1)(k2)

+imεµνδkδΠ(2)(k2), (70)

with Π(1)(k2) and Π(2)(k2) given by (63) and (67), re-
spectively, satisfying

Π(1)(0) = 0,
(71)

Π(2)(0) = − e2

4πm
.

Let us now derive the gauge boson propagator mod-
ified by vacuum polarization insertions, in the one-loop
approximation. This is given by the series

D = DF + iDFΠDF + iDFΠDFΠDF + . . .

= DF + iDFΠD, (72)

from which
D−1
µν = (DF

µν)
−1 − iΠµν , (73)

where DF is the free gauge boson propagator, (29).
Here, it is important to note that, by the Coleman–

Hill theorem [23], this approximation for the gauge boson
propagator gives the exact contribution for the topological
mass term. In what follows we reproduce the Coleman–Hill
argument in the context of distribution theory [24].

Let us consider an n-gauge boson ‘effective vertex’
given by the sum of all graphs consisting of a single closed
fermion loop with n external gauge bosons attached. Asso-
ciated to this vertex we have a numerical regular distribu-
tion t̂µ1... µn

(k1, . . . , kn), a generalized function of the n−1
independent momenta. By convention, we will take the
first n− 1 momenta as the independent ones and kn fixed
by momentum conservation. We will consider the distri-
bution t̂µ1... µn

in Euclidean space, where it is an analytic
generalized function of the momenta. So, gauge invariance
entails

kµ1
1 t̂µ1... µn

(k1, . . . , kn) = 0. (74)

Differentiating with respect to kν1 and taking kν1 = 0, we
get

t̂µ1...µn(0, k2, . . . , kn) = 0, (75)

or, expanding in Taylor series (remember that t̂µ1...µn
is a

regular distribution)

t̂µ1... µn(k1, . . . , kn) = O(k1). (76)

In the same way, t̂µ1... µn
is also O(k2). Since, for n > 2,

k1 and k2 are independent variables, we have

t̂µ1... µn
(k1, . . . , kn) = O(k1k2), n > 2. (77)

This shows that t̂µ1... µn
must be, at least, O(k1 . . .

kn−1). However, by Lorentz structure, it turns out that
t̂µ1... µn

is O(k1 . . . kn) for n > 2 (see appendix of [23]).
Then, we can construct a gauge boson self-energy

graph contracting bosonic lines of fermion loops (this im-
plies contracting t̂µ1... µn

with the commutation function
D

(+)
µν (k), (30)). Contracting all lines of a graph but two,

which are the external lines of the graph carrying mo-
menta k and −k, we have three possibilities: (i) the two
external lines are attached to distinct loops; (ii) the two
external lines end at the same loop, but this has more
than two bosonic lines; (iii) the two external lines end at
the same loop and this has only two bosonic lines. In cases
(i) and (ii) the corresponding distributions are O(k2) due
to (76) and (77), respectively. But from (70) and (73) we
see that the topological mass is given by the coefficient of
the term linear in k when k2 → 0. So, the only contribu-
tion to the topological mass comes from the second-order
perturbation theory, case (iii) above.

One can see that gauge invariance plays a central role
in the derivation of this result and, again, we see the rel-
evance of the construction outlined in Sect. 1 [6,7]. In
addition, we must observe that in this theory there are no
infrared difficulties because the gauge bosons are massive.
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Let us now turn to the inversion of (73). This is more
easily performed by introducing the following projection
operators

Pµν(1) =
1
2

(
gµν − kµkν

k2 + iεµνδ
kδ√
k2

)
,

Pµν(2) =
1
2

(
gµν − kµkν

k2 − iεµνδ
kδ√
k2

)
, (78)

Pµν(3) =
kµkν

k2 .

This orthonormal set of operators satisfies the relation

3∑
i=1

Pµν(i) = gµν . (79)

Then, the free gauge boson propagator can be written
as a linear combination of these projection operators as

Dµν
F =

i
M2

(
Pµν(1) + Pµν(2) − ξM2

k2 − ξM2P
µν
(3)

)
, (80)

such that the inversion is a trivial task. We just write down
its inverse,

(Dµν
F )−1 = −iM2

(
Pµν(1) + Pµν(2) − k2 − ξM2

ξM2 Pµν(3)

)
. (81)

In the same way we write the polarization tensor as

Πµν(k) = (Pµν(1) + Pµν(2))Π
(1)(k2)

+m
√
k2(Pµν(1) − Pµν(2))Π

(2)(k2). (82)

Introducing these expressions in (73) we get

Dµν = − i
k2 − Π̃(k2)

[(
gµν − kµkν

k2

)
M2 +Π(1)(k2)
[mΠ(2)(k2)]2

−iεµνδ
kδ

mΠ(2)(k2)

]

−iξ
kµkν

k2(k2 − ξM2)
, (83)

where

Π̃(k2) =
(M2 +Π(1)(k2))2

[mΠ(2)(k2)]2
. (84)

The form of the corrected propagator indicates that a
pole is generated by the fermion loop insertions, that is,
the gauge boson acquires a dynamical mass through the
loop effects. Calling Mgb the mass of the gauge boson, we
see that it is given by the solution of the transcendental
equation

(
mMgbΠ

(2)(M2
gb)
)2

=
(
M2 +Π(1)(M2

gb)
)2
,

for 0 ≤ Mgb < 2m. (85)

Before continuing the analysis of the equation above we
should observe that the limit G → ∞, which must be
taken with e fixed, is well defined in a general gauge (al-
though it is ill-defined in the unitary gauge, ξ → ∞), as
we can see from (29) and (83) [6,7]. Thus we verify that
there is a solution of (85) for all G for G > 0. In particu-
lar, for G → ∞ we get Mgb = 0, as we can see by noticing
that, in this limit, M → 0 and, therefore,

Π̃(k2)M2=0 =
(Π(1)(k2))2

[mΠ(2)(k2)]2
, (86)

while, from (71), we see that Π̃(0)M2=0 = 0, so that
Mgb = 0 is, in fact, a solution.

On the other side, for G → 0+ we have

Mgb

2m
= 1 − α exp

(
− 2π
mG

)
, (87)

where α = 2e− 1
2 .

The solutions of the transcendental equation (85) in
these two cases are consistent with the results expected.
The Aµ field can be thought of as a bound state of two
fermions. So, in the limit of very weak interaction, we
expect that the mass of the vector channel is 2m. On the
other hand, in the limit of strong interaction we expect
that the mass of Aµ goes to zero.

Finally, we should observe that the expression for the
corrected propagator (83) has a well defined limit m → 0,
but in this case there is no pole for time-like momentum.

6 Conclusions

In this paper we have studied the massive gauged Thirring
model in the context of the Epstein and Glaser’s causal
theory, and derived a proof of the nonrenormalizability of
the model, obtaining a general expression for the singu-
lar order of the distributions associated with an arbitrary
process.

In the sequence, we have obtained the vacuum polar-
ization tensor by using the causal theory and have shown
that the gauge boson, which at level three is an auxiliary
field, becomes dynamical. The causal method naturally
afforded the correct number of subtractions for the anti-
symmetric part of the vacuum polarization tensor and en-
abled us to determine the coefficient of the induced Chern–
Simons term without ambiguity. Yet, the existence of a
gauge symmetry leads to a result such that e2 ≡ GM2,
according to the Coleman–Hill theorem.

We have also solved the transcendental equation for
the pole of the gauge boson in the opposite cases of very
strong and very weak coupling, obtaining results in accor-
dance with those of [5,7].

Finally, it is important to note that in applying the
causal method we never run into the usual ultraviolet di-
vergences. Therefore, for nonrenormalizable models there
is no necessity for a cut-off. However, even for renormal-
izable or super-renormalizable theories [13], we still have
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constants that are not fixed by causality. In the case of
renormalizable and super-renormalizable theories these
constants are determined by physical requirements, while
for nonrenormalizable theories there remain a number of
undetermined constants, which increase with the order of
perturbation theory.
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